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On the Peaking Problem of the 

Sensitivity Matrix S 
 
   

Sung-il Kwon, Yi-Ming Wang, and Amy Regan 
SNS-2, RF Technology Group 

 
 
 
1.  Background on the Feedback Control System  
Configuration  
 
The sensitivity matrix is a defining tool of the transfer matrix (function) from the set point  r  to 
the error  r-y. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1   Feedback system configuration 
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The above figure shows the typical feedback control system configuration. The control purpose is 
to follow (track) the reference (set point) r,  1

2
≤r  and reject the effect of the scaled 

disturbance d, 1
2

≤d . 
 
The error is given by 
 
   dGGKIrGKIyre d

11 )()( −− +−+=−=  
 
and the output is given by 
 
  dGGKIGKrGKIyrGKy d

11 )()()( −− +−+=−= . 
   
In control theory the sensitivity matrix is defined as 
 
   1)( −+= GKIS  
 
and the complementary sensitivity matrix is defined as 

 
GKGKIT 1)−+=  

 
and the loop transfer matrix is defined as  
   

  GKL = . 
 
Roughly speaking, the sensitivity matrix is the transfer matrix from the set point to the error and 
the complementary sensitivity matrix represents the transfer matrix from the set point r to the 
output y. 
   
The sensitivity matrix defines the transfer matrix from the reference (set point) r to the error e by 
    

   ))(())((
2

2 ωσωσ jS
r
e

jS ≤≤  

 
where  ))(( ωσ jS and ))(( ωσ jS  are the minimal singular value and the maximal singular 
value of  )( ωjS . Usually, ))(( ωσ jS  is defined as the  infinite norm,  

∞
)( ωjS of )( ωjS .  

For a normalized reference,  r ,  1
2

≤r , the plot of  ))(( ωσ jS =
∞

)( ωjS  represents the error 
of the reference tracking.   Also, the closed loop system bandwidth is defined as the frequency 
where 

∞
)( ωjS  crosses the �3dB point from the below.   
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2.  The Peaking in the Sensitivity Matrix 
 
In SNS, the normal conducting linac section consists of RFQ, DTL tanks, and CCL modules.  

The low level RF control system for a cavity is well matched with the feedback system 

configuration shown in figure 1.  A cavity is driven by a high power RF amplifier, a klystron. The 

cascade of a klystron and a cavity is considered as the plant G  in figure 1. A PI controller is used 

for the field stabilization. The PI feedback controller is considered as the controller K in figure 1. 

From the perspective of a cavity, the beam current is an exogenous disturbance. The beam current 

input is considered as the block dG  in figure 1. In addition, there are several sources of time 

delays: time delay in the waveguide, time delay in cavity field signal pickup cable, forward 

control signal  loop delay, delay  inside a klystron, and time delay  due to the DSP computation. 

These time delays must be included in the block diagram of figure 1 at the appropriate locations, 

in order to obtain the more exact model of the low level RF control system. 

 

Figure 2 shows the magnitude responses of the closed loop system of a DTL control system. In 

the magnitude response of the sensitivity matrix, the magnitude 210−  means the 1.0 % error.   In 

that figure, we observe the peaking of the sensitivity matrix plot at 4.5e5 rad/sec (71.6 kHz). 

Typically, peaking indicates a possibility of instability, particularly at high frequencies. When we 

consider the meaning of the sensitivity matrix, it seems that we are not worried about that peaking 

because the reference (set point) trajectory we use does not have that frequency component. If a 

reference has that frequency component, in order to achieve the set point tracking of the closed 

loop system, high closed loop system bandwidth is required.  I mentioned that sensitivity matrix 

defines the transfer matrix from the reference to the error and figure 2 gives the equation.  

 

If we are still nervous about that peaking, by reducing the PI feedback gain matrices, we decrease 

the peaking.  However, this sacrifices the closed loop system bandwidth and degrades the 

disturbance attenuation performance of the closed loop system. Since usually the transfer function 

dG  is low pass filter-like, and since the decrease of the closed loop system bandwidth implies the 

shift of the plot of ))(( ωσ jS  to the left in the frequency domain, the plot of the singular value  

))(( 1
dGGKI −+σ  of  transfer matrix  dGGKI 1)( −+  moves to the left in the frequency 

domain.   Therefore, the frequency range of the disturbance d  which can be attenuated decreases.   
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            Figure 2   Magnitude Responses 
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Why is there peaking in the sensitivity matrix and complementary sensitivity 

matrix? 
 

The first reason is the right half plane zeros due to the time delay.  In the model, the time delay is 

approximated by Pade approximation. Since the time delay is an infinite-dimensional system, the 

Pade approximation yields right half plane zeros regardless of the order of the approximation.   

 

The second reason is due to the FIR filter in the field control system. The FIR filter design based 

on the Remez exchange algorithm yields zeros near the unit circle in the z-plane with some inside 

the unit circle and others outside the unit circle. By the bilinear transformation, the discrete time 

FIR filter is transformed to the continuous time system in s-domain for frequency domain 

analysis. In that process, the zeros outside the unit circle in the z-plane are transformed to the 

zeros in the right half plane of the s-plane and the zeros inside the unit circle are transformed to 

the zeros in the left half plane of the s-plane.  Also, the discrete time FIR filter has poles at the 

origin in the z-plane. When they are transformed to the s-plane, poles at the origin of s-plane 

result.  

 

Example)  In order to clarify this, an example is considered (figure 3).  The open loop system is 

given by 

    
10

10
+

=
s

go . 

Also, in the loop, there is a time delay, sec01.0=dτ . This time delay is implemented in 

Simulink as dse τ− .  Time delay is approximated by Pade Approximation which is given by 
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where n is the order of approximation. The approximation shows that time delay has n right-half 

plane zeros. As n increases, the number of right half plane zeros increases. 

With time delay being included in the open loop system, the time delayed open loop system is 
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Assume a feedback controller of proportional gain, K . 

Then, sensitivity matrices (functions) are given by  

  
)1010(

10)1( 1
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sKgS oo ++

+=+= −   
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where oS  and odS  represent the sensitivity matrices without time delay and with time delay, 

respectively. 

 
 
 
 
 
 
 
 
 

 

 
 
 
 
 
 

Figure 3   Feedback system configuration of example  
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Figure 4 shows the magnitude plots of sensitivity matrices (functions) when the gain K  is 5.0 

and the order of Pade approximation, n,  is 10. The peaking is about 1.54.  

 

The peaking is unavoidable but it can be reduced by reducing the proportional gain K . Figure 5 

shows the cases where 0.5=K , 5.2=K , 0.1=K . Figure 5 shows that the peaking can be 

reduced by reducing the proportional gain. However, it yields the decrease of the closed loop 

system bandwidth which plays the main role in attenuating the external disturbance d . For 

0.5=K , the closed loop system bandwidth is ~40 rad/sec, and for 5.2=K , the closed loop 

system bandwidth is ~25 rad/sec, and for 0.1=K , the closed loop system bandwidth is ~13 

rad/sec. 

 
 
 
 
 
 
 
 
 
   
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4   Magnitude of  Sensitivity Matrix (function) when K=5.0, n=10 
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Figure 5   Magnitude of  Sensitivity Matrices (functions ) when 0.5=K , 5.2=K ,  
   0.1=K ,  and  n=10 

 
 
 
 
3.  Reduction of the peaking in our system 
 
 
The plot shown in figure 2 is when the PI feedback gain matrices are at their critical values 

(maximal values) which are not violating the constraint due to time delay on the closed loop 

system bandwidth (inverse of the time delay in rad/sec), 

    
d

CBW τ
ωω 1<≤  

where BWω  is the closed loop system bandwidth in rad/sec at which ))(( ωσ jS  crosses �3 dB 

(
2

1
) from the below and Cω  is the gain crossover frequency in rad/sec at which ))(( ωσ jL  

crosses 0 dB (1) from the above. For simulations, all conditions are kept the same.  

Klystron delay: 150 secn  

Waveguide delay: 116.5 secn  (100 ft) 

Cable delay: 121 secn  (100 ft) 
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The total time delay is 1.392 secµ . 

The maximal PI feedback Gain Matrices based on the assumption of 1.392 secµ  loop delay are 
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Proportional Gain 

Matrix 

Integrator Gain 

Matrix 

Closed Loop 

System 

Bandwidth  

(kHz) 

Sensitivity 

Matrix Peaking 

Comp. 

Sensitivity 

Matrix Peaking 

maxPK  axK Im  40   6.3764 5.5985 

maxPP KK =  axI KK Im5.0=   36.6  3.892 3.2121 

max5.0 PP KK =  axI KK Im5.0=  25.5  2.6109 2.3131 

max5.0 PP KK =  axI KK Im25.0=  20.7  1.7833 1.2736 

max25.0 PP KK =  axI KK Im25.0=  15.1  1.9644 1.8663 

max25.0 PP KK =  axI KK Im1.0=  11.1  1.3084 1.2755 

max1.0 PP KK =  axI KK Im1.0=  8.1  1.6709 1.4255 

Open Loop System Bandwidth: 15.9 kHz 
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